
ONOS

Open Network Operating System

Architecture, Abstractions & Performance

ONOS Day

September 15th, 2015

Thomas Vachuska & Ali Al-Shabibi

Architectural Tenets
● High-availability, scalability and performance

o required to sustain demands of service provider & enterprise networks

● Strong abstractions and simplicity
o required for development of apps and solutions

● Protocol and device behaviour independence
o avoid contouring and deformation due to protocol specifics

● Separation of concerns and modularity
o allow tailoring and customization without speciating the code-base

Service Provider Networks

● WAN core backbone
o Multi-Protocol Label Switching (MPLS) with Traffic Engineering (TE)

o 200-500 routers, 5-10K ports

● Metro Networks
o Metro cores for access networks

o 10-50K routers, 2-3M ports

● Cellular Access Networks
o LTE for a metro area

o 20-100K devices, 100K-100M ports

● Wired access / aggregation
o Access network for homes; DSL/Cable

o 10-50K devices, 100K-1M ports

ONOS Distributed Architecture

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

Protocols

Providers

Protocols

Providers

Protocols

Providers

Protocols

Providers

AppsApps

ONOS Subsystems - Today & 2015

Device Link Host

Topology

Flow Rule

Path

Packet

StatisticsIntent

Application

Leadership

Messaging

Storage Region

Mastership

Driver

Group

Security

Flow Objective

Event

OpenFlow NetConf OVSDB

Core Cluster

. . .

Proxy ARPMobility L2 Forwarding

REST API GUI CLI

Network Cfg.

SDN IP / BGP Packet / Optical

Tunnel

. . .

OSGi / Apache Karaf

Network Virt.Device Cfg.

Config

UI Extension

External Apps

Graph

Discovery Tenant . . .

Roadmap items for 2015Available today

Manager

Component

ONOS Core Subsystem Structure

Adapter

Component

Adapter

Component

App
Component

ServiceAdminService

Listener

notify

command

command

sync & persist

add & remove

query &

command

App
Component

Adapter

Component

Manager

Component

AdapterRegistry

Adapter

AdapterService

ServiceAdminService

Listener

notify

register & unregister

command

command

sensing

add & remove

query &

command

Store Store

Protocols

sync & persist

Adapter

Component

AdapterRegistry

Adapter

AdapterService

register & unregistersensing

Protocols

ONOS Core

Control Plane State

● Topology

● Flows

● Intents

● Switch to controller mapping

● Resource allocations

● Network Configuration

● And a plethora of application

generated state

● Observed network state

● Each controller directly observes a subset of network

● Applications access Global Network View in its entirety

● Data plane is source of truth Apps

Topology

● Data plane forwarding rules

● Naturally partitioned by forwarding element (switch)

● Control plane is the source of truth

Flows

State and Properties

State Properties

Network Topology Eventually consistent, low latency

access

Flow Rules, Flow Stats Eventually consistent, shardable,

soft state

Switch - Controller mapping

Distributed Locks

Strongly consistent, slow

changing

Application Intents

Resource Allocations

Strongly consistent, durable

Immutable

Drawback of a single (Logically)

Central Datastore

● Tuned for either high availability or

strong consistency

● Fails to exploit the access

patterns and locality

constraints of some state

● There is no one solution to rule them all

● A core set of state management primitives

ONOS: Polyglot State Management

ONOS Core Summary
• All the distributed notions used to implement

our solutions are available to you:

 Transactional Map
 Distributed Set
 Atomic Counter
 Leadership Service
 EventuallyConsistentMap<K, V, T extends

Timestamp>
 ConsistentMap<K, V>

ONOS Southbound

ONOS Southbound

● ONOS supports multiple

southbound protocols,

enabling a transition to true

SDN.

● Adapters provide

descriptions of dataplane

elements to the core - core

utilizes this information.

● Adapters hide protocol

complexity from ONOS.

Area of focus

● Attempt to be as generic as possible

● Enable partners/contributors to submit their own device/protocol

specific providers

● Providers should be stateless; state may be maintained for

optimization but should not be relied upon

Adapter Pattern

1. Adapter registers with core

a. Core returns a AdapterService bound to the Adapter

2. Adapter uses AdapterService to notify core of new events (device connected, pktin) via

Descriptions

3. Core can use Adapter to issue commands to elements under Adapter control

4. Eventually, the adapter unregisters itself; core will invalidate the AdapterService

1
2 3

4
Adapter

Component

Manager

Component

AdapterRegistry

Adapter

AdapterService

register & unregistersensing

Protocols

This is where the

magic happens

Descriptions

● Serve as scratch pads to

pass information to core

● Descriptions are immutable

and extremely short lived

● Descriptions contains URI for

the object they are

describing

● URI also encode the Adapter

the device is linked to

Flow Objective Subsystem
● Problem: Applications today must be pipeline aware, effectively making them applicable to specific HW.

Controller Platform

? ? ?

Flow Objective Abstraction
● Problem: Applications currently must be pipeline aware, effectively making applicable on specific HW.

Flow Objective Abstraction
● Problem: Applications currently must be pipeline aware, effectively making applicable on specific HW.

Flow objectives enable developers to write applications once for all pipelines

First attempt at

interoperability

between OF 1.3

switch

Flow Objective Summary

● Flow Objective Service: Abstraction for applications to

be pipeline unaware while benefiting from scalable,

multi-table architectures

● Aims to make it simple to write apps

● First attempt at achieving interoperability between OF

1.3 implementations

ONOS Northbound

Building Network Applications
Objective: Connect Host 1 and Host 2

1. Read/discover the topology

2. Compute a path

3. Build flow objectives for each device

4. Install rules in consistent way

Host 1 Host 2

Building Network Applications
What can go wrong?

● Missing / rejected / dropped rules

o Monitor devices connections

o Send barriers between rule updates

o Poll flow state

● Topology changes
o Listen to switch, port, link and host events

o Compute new path that leverage or remove old flows

Host 1 Host 2

Intent Framework

• Provides high-level, network-centric interface

that focuses on what should be done rather than

how it is specifically programmed

• Abstracts unnecessary network complexity from

applications

• Maintains requested semantics as network

changes

• High availability, scalability and high

performance

Intent Example
Host to Host Intent

Intent Example
Host to Host Intent

Intent Service API

submit()

Intent Example

COMPILATION

Path IntentPath Intent

Host to Host Intent

Intent Example

COMPILATION

INSTALLATION

Flow Rule Batch Flow Rule Batch

Flow Rule BatchFlow Rule Batch

Path IntentPath Intent

Host to Host Intent

Intent Framework Summary
● Intents are a network-centric programming

abstraction that reduce application complexity.

● Intents provide device-agnostic behavior with

persistency and high performance across network

failures.

● Intent framework has moved from prototype to

production deployments.

ONOS Performance

Control Plane Performance
● Throughput of proactive provisioning actions

o path flow provisioning

o global optimization or rebalancing of existing path flows

● Latency of responses to topology changes
o path repair in wake of link or device failures

● Throughput of distributing and aggregating state
o batching, caching, parallelism

o dependency reduction

● Controller vs. device responsibilities
o defer to devices to do what they do best, e.g. low-latency reactivity,

backup paths

Performance Metrics
● Device & link sensing latency

o measure how fast can controller react to environment changes, such

as switch or port down to rebuild the network graph and notify apps

● Flow rule operations throughput

o measure how many flow rule operations can be issued against the

controller and characterize relationship of throughput with cluster size

● Intent operations throughput

o measure how many intent operations can be issued against controller

cluster and characterize relationship of throughput with cluster size

● Intent operations latency

o measure how fast can the controller react to environment changes

and reprovision intents on the data-plane and characterize scalability

Device & Link Sensing Latency

Link Up/Down Latency

● Since we use LLDP & BDDP to discover

links, it takes longer to discover a link

coming up than going down

● Port down event trigger immediate teardown

of the link.

Flow Rule Operations Throughput

Flow Throughput results

● Single instance can install over 500K

flows per second

● ONOS can handle 3M local and 2M

non local flow installations

● With 1-3 ONOS instances, the flow

setup rate remains constant no

matter how many neighbours are

involved

● With more than 3 instances injecting

load the flow performance drops off

due to extra coordination requires.

Intent Throughput Experiment

Intent Throughput Results

● Processing clearly scales as cluster size increases

Intent Latency Experiment

Intent Latency Results

● Less than 100ms to install or withdraw a batch of intents

● Less than 50ms to process and react to network events
o Slightly faster because intent objects are already replicated

Key Takeaways

● Lack of high performance, scalable, highly available SDN control

plane and solutions are key barriers to SDN adoption in service

provider networks

● ONOS addresses this challenge with logically centralized but

distributed architecture that provides performance, scale, HA

together

● Comprehensive set of metrics and measurements for ONOS

Blackbird release are published on the wiki @

http://bit.ly/blackbird-eval

http://bit.ly/blackbird-eval

Summary
ONOS continues to evolve to:

● operate ever more efficiently and reliably

● support larger scale networks

● further simplify the programming model for applications

● broaden the set of supported devices and protocols

● simplify SDN deployments

Checkout our tutorials at:

wiki.onosproject.org

Join the journey @ onosproject.org

Software Defined Transformation of Service Provider Networks

